145 research outputs found

    Irbesartan for the treatment of hypertension in patients with the metabolic syndrome: A sub analysis of the Treat to Target post authorization survey. Prospective observational, two armed study in 14,200 patients

    Get PDF
    OBJECTIVES: The metabolic syndrome is a cluster of cardiovascular risk factors leading to an increased risk for the subsequent development of diabetes and cardiovascular morbidity and mortality. Blocking the renin-angiotensin system has been shown to prevent cardiovascular disease and delay the onset of diabetes. Irbesartan is an angiotensin receptor blocker (ARB) which has been shown to possess peroxisome proliferator-activated receptor gamma (PPARγ) activating properties, and to have a favorable metabolic profile. Current discussion is whether the addition of small doses of hydrochlorothiazide changes this profile. Therefore the efficacy, safety and metabolic profile of Irbesartan either as monotherapy or in combination therapy was assessed in patients with the metabolic syndrome in a large observational cohort in primary care. RESEARCH DESIGN AND METHODS: Multicenter, prospective, two-armed, post authorization study over 9 months in 14,200 patients with uncontrolled hypertension with and without the metabolic syndrome (doctors' diagnosis based on the Adult Treatment Panel III criteria 2001). Blood pressure was measured sphygmomanometrically and cardiovascular risk factors making up the criteria for the metabolic syndrome were assessed. MAIN OUTCOME MEASURES: Systolic (SBP) and diastolic (DBP) blood pressure reduction, – response, and – normalization (systolic and diastolic), changes in fasting glucose, waist circumference (abdominal obesity), serum triglycerides and HDL cholesterol as well as the proportion of patients fulfilling the criteria for the metabolic syndrome. Number and nature of adverse events (AEs). RESULTS: After 9 month the use of Irbesartan in monotherapy resulted in a significant reduction of blood pressure (SBP: -26.3 ± 10.1 mmHg/DBP-13.0 ± 6.6 mmHg, both p < 0.0001) in patients with the metabolic syndrome. This was accompanied by a reduction in cardiovascular risk factors: HDL cholesterol (+3.6 ± 7.2 mg/dl in men, +3.8 ± 6.5 mg/dl in women, both p < 0.0001), serum triglycerides (-28.6 ± 52.1 mg/dl, p < 0.0001), fasting blood glucose (-8.4 ± 25.1 mg/dl, p < 0.0001) and waist circumference (-2.4 ± 11.9 cm in men, -1.2 ± 14.2 in women, both p < 0.0001) were significantly improved. Irbesartan combination therapy (12.5 mg HCTZ) in patients with the metabolic syndrome: blood pressure reduction (SBP: -27.5 ± 10.1 mmHg/DBP: -14.1 ± 6.6 mmHg, both p < 0.0001), improvement in HDL cholesterol (+4.0 ± 6.8 mg/dl in men, +3.4 ± 6.8 in women, both p < 0.0001), triglycerides (-34.1 ± 52.6 mg/dl, p < 0.0001), fasting blood glucose (-10.0 ± 24.7, p < 0.0001) and waist circumference (-3.2 ± 12.7 cm in men, -1.7 ± 14.4 in women, both p < 0.0001). Tolerability was excellent: only 0.6% of patients experienced an AE. CONCLUSION: There was a significant improvement in blood pressure and metabolic risk factors as a result of Irbesartan treatment. There was no evidence of a difference between monotherapy and combination therapy with regard to the cardiovascular risk profile

    PPARgamma activation attenuates T-lymphocyte-dependent inflammation of adipose tissue and development of insulin resistance in obese mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammation of adipose tissue (AT) has been recently accepted as a first step towards obesity-mediated insulin resistance. We could previously show that mice fed with high fat diet (HFD) develop systemic insulin resistance (IR) and glucose intolerance (GI) associated with CD4-positive T-lymphocyte infiltration into visceral AT. These T-lymphocytes, when enriched in AT, participate in the development of fat tissue inflammation and subsequent recruitment of proinflammatory macrophages. The aim of this work was to elucidate the action of the insulin sensitizing PPARgamma on T-lymphocyte infiltration during development of IR, and comparison of the PPARgamma-mediated anti-inflammatory effects of rosiglitazone and telmisartan in diet-induced obesity model (DIO-model) in mice.</p> <p>Methods</p> <p>In order to investigate the molecular mechanisms underlying early development of systemic insulin resistance and glucose intolerance male C57BL/6J mice were fed with high fat diet (HFD) for 10-weeks in parallel to the pharmacological intervention with rosiglitazone, telmisartan, or vehicle.</p> <p>Results</p> <p>Both rosiglitazone and telmisartan were able to reduce T-lymphocyte infiltration into AT analyzed by quantitative analysis of the T-cell marker CD3gamma and the chemokine SDF1alpha. Subsequently, both PPARgamma agonists were able to attenuate macrophage infiltration into AT, measured by the reduction of MCP1 and F4/80 expression. In parallel to the reduction of AT-inflammation, ligand-activated PPARgamma improved diet-induced IR and GI.</p> <p>Conclusion</p> <p>Together the present study demonstrates a close connection between PPARgamma-mediated anti-inflammation in AT and systemic improvement of glucose metabolism identifying T-lymphocytes as one cellular mediator of PPARgamma´s action.</p

    Metabolic Actions of Estrogen Receptor Beta (ERβ) are Mediated by a Negative Cross-Talk with PPARγ

    Get PDF
    Estrogen receptors (ER) are important regulators of metabolic diseases such as obesity and insulin resistance (IR). While ERα seems to have a protective role in such diseases, the function of ERβ is not clear. To characterize the metabolic function of ERβ, we investigated its molecular interaction with a master regulator of insulin signaling/glucose metabolism, the PPARγ, in vitro and in high-fat diet (HFD)-fed ERβ -/- mice (βERKO) mice. Our in vitro experiments showed that ERβ inhibits ligand-mediated PPARγ-transcriptional activity. That resulted in a blockade of PPARγ-induced adipocytic gene expression and in decreased adipogenesis. Overexpression of nuclear coactivators such as SRC1 and TIF2 prevented the ERβ-mediated inhibition of PPARγ activity. Consistent with the in vitro data, we observed increased PPARγ activity in gonadal fat from HFD-fed βERKO mice. In consonance with enhanced PPARγ activation, HFD-fed βERKO mice showed increased body weight gain and fat mass in the presence of improved insulin sensitivity. To directly demonstrate the role of PPARγ in HFD-fed βERKO mice, PPARγ signaling was disrupted by PPARγ antisense oligonucleotide (ASO). Blockade of adipose PPARγ by ASO reversed the phenotype of βERKO mice with an impairment of insulin sensitization and glucose tolerance. Finally, binding of SRC1 and TIF2 to the PPARγ-regulated adiponectin promoter was enhanced in gonadal fat from βERKO mice indicating that the absence of ERβ in adipose tissue results in exaggerated coactivator binding to a PPARγ target promoter. Collectively, our data provide the first evidence that ERβ-deficiency protects against diet-induced IR and glucose intolerance which involves an augmented PPARγ signaling in adipose tissue. Moreover, our data suggest that the coactivators SRC1 and TIF2 are involved in this interaction. Impairment of insulin and glucose metabolism by ERβ may have significant implications for our understanding of hormone receptor-dependent pathophysiology of metabolic diseases, and may be essential for the development of new ERβ-selective agonists

    The Transcriptome of Human Epicardial, Mediastinal and Subcutaneous Adipose Tissues in Men with Coronary Artery Disease

    Get PDF
    The biological functions of epicardial adipose tissue (EAT) remain largely unknown. However, the proximity of EAT to the coronary arteries suggests a role in the pathogenesis of coronary artery disease (CAD). The objectives of this study were to identify genes differentially regulated among three adipose tissues, namely EAT, mediastinal (MAT) and subcutaneous (SAT) and to study their possible relationships with the development of cardiovascular diseases.Samples were collected from subjects undergoing coronary artery bypass grafting surgeries. Gene expression was evaluated in the three adipose depots of six men using the Illumina® HumanWG-6 v3.0 expression BeadChips. Twenty-three and 73 genes were differentially up-regulated in EAT compared to MAT and SAT, respectively. Ninety-four genes were down-regulated in EAT compared to SAT. However, none were significantly down-regulated in EAT compared to MAT. More specifically, the expression of the adenosine A1 receptor (ADORA1), involved in myocardial ischemia, was significantly up-regulated in EAT. Levels of the prostaglandin D2 synthase (PTGDS) gene, recently associated with the progression of atherosclerosis, were significantly different in the three pairwise comparisons (EAT>MAT>SAT). The results of ADORA1 and PTGDS were confirmed by quantitative real-time PCR in 25 independent subjects.Overall, the transcriptional profiles of EAT and MAT were similar compared to the SAT. Despite this similarity, two genes involved in cardiovascular diseases, ADORA1 and PTGDS, were differentially up-regulated in EAT. These results provide insights about the biology of EAT and its potential implication in CAD

    Hybrid cosmic ray measurements using the IceAct telescopes in coincidence with the IceCube and IceTop detectors

    Get PDF
    IceAct is a proposed surface array of compact (50 cm diameter) and cost-effective Imaging Air Cherenkov Telescopes installed at the site of the IceCube Neutrino Observatory at the geographic South Pole. Since January 2019, two IceAct telescope demonstrators, featuring 61 silicon photomultiplier (SiPM) pixels have been taking data in the center of the IceTop surface array during the austral winter. We present the first analysis of hybrid cosmic ray events detected by the IceAct imaging air-Cherenkov telescopes in coincidence with the IceCube Neutrino Observatory, including the IceTop surface array and the IceCube in-ice array. By featuring an energy threshold of about 10 TeV and a wide field-of-view, the IceAct telescopes show promising capabilities of improving current cosmic ray composition studies: measuring the Cherenkov light emissions in the atmosphere adds new information about the shower development not accessible with the current detectors, enabling significantly better primary particle type discrimination on a statistical basis. The hybrid measurement also allows for detailed feasibility studies of detector cross-calibration and of cosmic ray veto capabilities for neutrino analyses. We present the performance of the telescopes, the results from the analysis of two years of data, and an outlook of a hybrid simulation for a future telescope array

    Observation of Cosmic Ray Anisotropy with Nine Years of IceCube Data

    Get PDF

    Design of an Efficient, High-Throughput Photomultiplier Tube Testing Facility for the IceCube Upgrade

    Get PDF
    • …
    corecore